
Python Programming

1. Getting Started with Python
What is included in the course

Installing Python

Writing your first code

Downloading and setting up the development environment

What is the Python language and how it is used

Concepts:

What are variables and values

Working with values

Data Types:

Boolean, integers, floating-point numbers

Scientific notation

Strings

Binary, octal, decimal, and hexadecimal numeral systems

Variables

Naming conventions

Implementing PEP-8 recommendations

Operators:

+ - * // % / ** – Numeric operators

+ – String operators

Assignment and shortcut operators

Unary and binary operators

Priorities and binding

<< >> | & ^ ~ – Bitwise operators

Boolean operators: not, and, or

Boolean expressions

Relational operators: == != < > <= >=

Accuracy of floating-point numbers

Type casting

Additional Concepts:

Code clarity

Constants and best practices

Value comparison using user input

Value substitution

Conditional statements:

if, elif, else, switcher (match-case)

Exercises

15 hours of content | 40 hours of practice | Exam

2. Data Structures
Working with data structures: list, set, tuple

Combining and nesting data structures

Working with dictionaries (Dictionary)

JSON

Creating nested structures

Working with dynamic objects

Nested/recursive structures

Exercises

3. Loops and Functions
Loops (for, while)

enumerate

continue, break, pass, else

List Comprehension

Nested and multiple loops

Basic functions

Built-in functions (sum(), count(), len() etc.)

Return values

Using return

Using debugger to demonstrate correct function behavior

Advanced function arguments: *args and **kwargs

Anonymous functions – lambdas

Exercises

4. Exception Handling and Multithreading
Working with exceptions

Different exceptions

Custom exceptions

Basic error handling

Advanced error handling

Working with the debugger

Debugging process

try, except, else, finally

Modules

__name__ attribute

Importing and splitting files

os, sys, random

Working with the threading module

Managing threads

Shared memory and synchronization between threads

Working with processes (Process)

Asynchronous programming: async / await

Exercise

5. Networking and Compilation
Networking basics

Working with IP addresses and information

Basic socket development

Client/server communication using sockets

Building basic network tools

Sharing data over the network

Communication between multiple users

Client/server communication including login/authentication

Secure transmission between users

TCP vs UDP

Compiling Python into executable .EXE files

Exercise

6. Object-Oriented Programming (OOP)

Introduction to object-oriented programming

What is a class and what does it represent

The four OOP principles:

Inheritance, Encapsulation, Abstraction, Polymorphism

Creating and working with classes

Class components: __init__, functions, attributes

Static and dynamic attributes

Public and private access

Inheritance and working with super()

Multiple inheritance

Composition vs inheritance

Building a mini-game using OOP principles

7. Client-Side Development
Web scraping from websites

Automated site interaction using Selenium

Selenium testing and scraping

Setting up a basic server with Flask

Fullstack with Flask

RESTful communication with Flask

Building a simple website with Flask – Todo list project

8. GUI Development
Developing graphic user interfaces (GUI)

Understanding Python’s built-in Tkinter library

Using Tkinter

Creating interfaces using HTML and Python

Developing GUIs with the Eel library

Developing a “Guess the Word” game

Developing a network scanning application

Exercise

